Fast, data-assisted simulations of bubble transport in submerged double jets

Thomas Lichtenegger 6th K1MET Simulation Conference, Vienna, 23.4.2025

Overview

Why do we need data-assisted simulation methods?

Application case: Bubble transport in submerged jets

• Current activities: Towards real-time simulations of impurity transport and capture

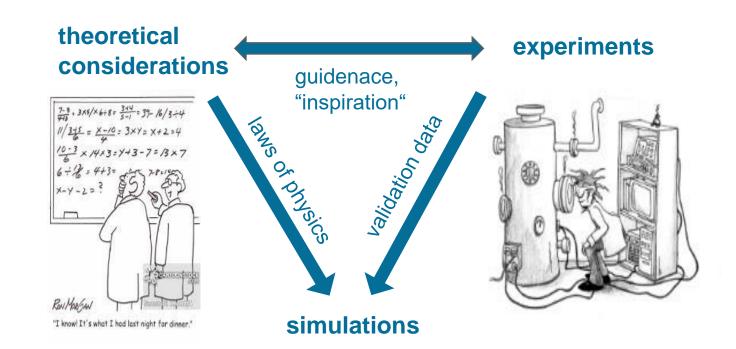
Outlook: Prevention of rare events

The need for data-assisted simulations

The importance of process simulations

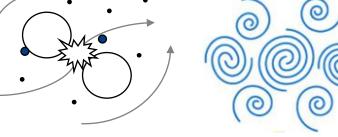
Many industrial processes exhibt multiscale and multiphysics phenomena:

- complex systems
- difficult to describe accurately
- optimization ?
- novel, 'green' processes?

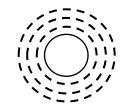


≈ 10⁻⁶ ... 10⁻³ m length scale ≈ 10⁰ ... 10¹ m

EOMs known only at small scales



small Δt = short observations current limit: a few minutes



chem. reactions, heat transfer

large N, V =

- large comp. costs
- lack of small-scale info

www.voestalpine.com

 $\approx 10^{-6} \text{ s}$

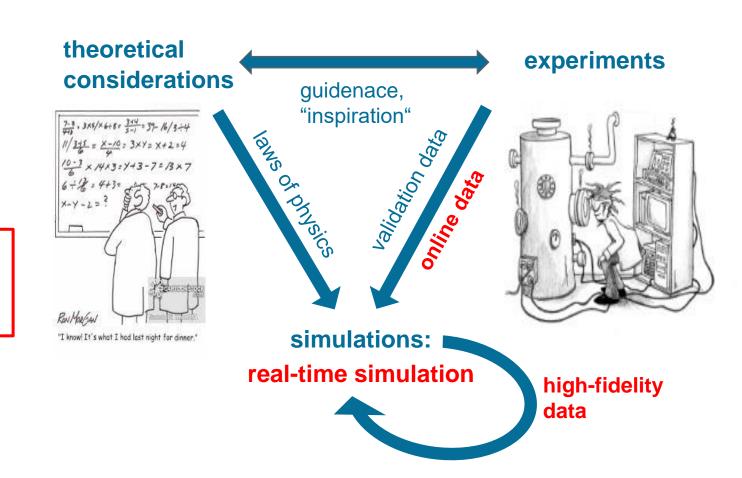
time scale

The importance of data for process simulations

Many industrial processes exhibit multiscale and multiphysics phenomena:

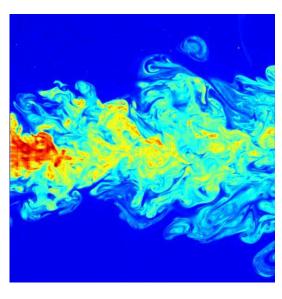
- complex systems
- difficult to describe accurately
- optimization?
- novel, 'green' processes ?

Microscopic EOMs not sufficient: data allow us to include meso and macro behavior!



Strongly separated time scales

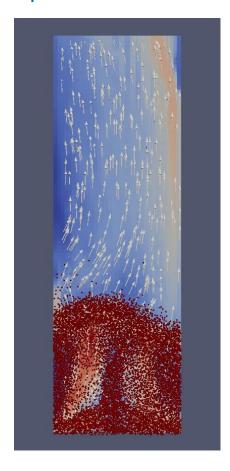
turbulence



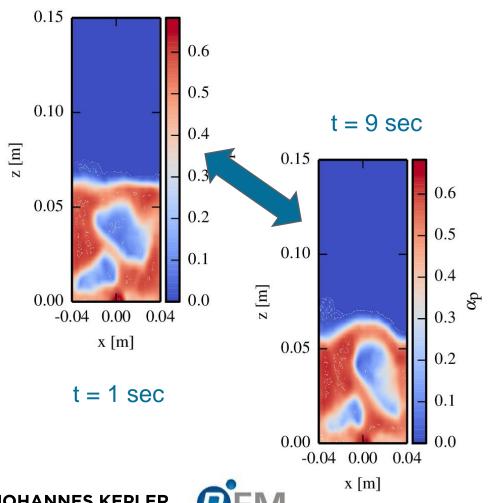
bubbly flows

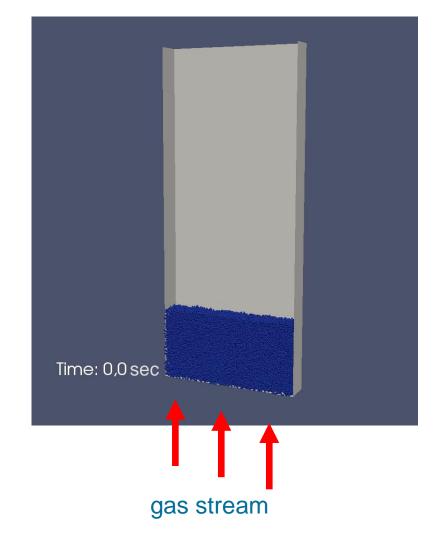
common feature of many flows with separated time scales: (transio-)recurring patterns

particulate flows



An illustrative example: Fluidized particle beds

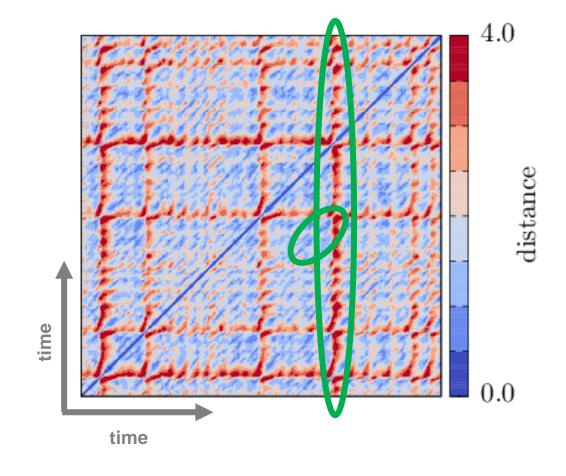




Recurrence plots¹ compare a system at two times based on some metric, e.g.

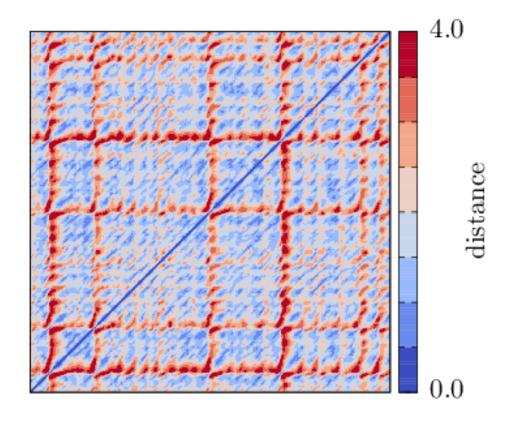
$$D(t_1, t_2) \propto \int d^3r \left(\alpha_{\rm p}(\mathbf{r}; t_1) - \alpha_{\rm p}(\mathbf{r}; t_2)\right)^2$$

visual representation of recumences rance eventuse etc.



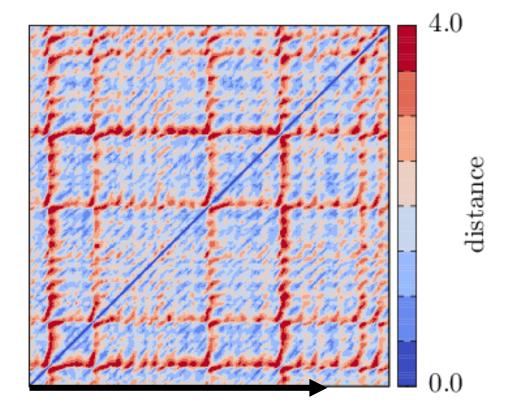
Recurrence CFD¹ in a nutshell

0.) Create a short, high-fidelity time series of flow fields.



Recurrence CFD¹ in a nutshell

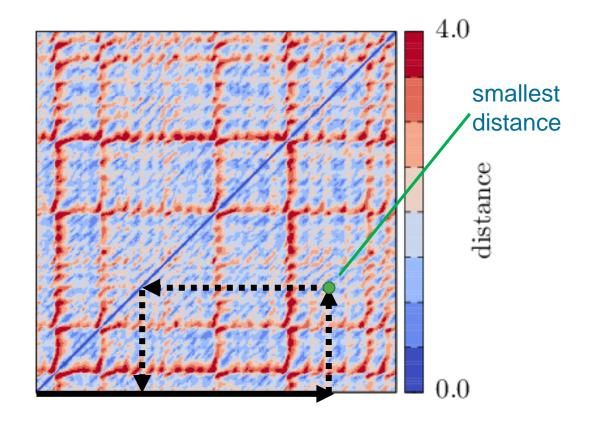
- 0.) Create a short, high-fidelity time series of flow fields.
- 1.) Take time-ordered sequence of fields.



1. TL and Pirker, Chem. Eng. Sci. 153 (2016)

Recurrence CFD¹ in a nutshell

- 0.) Create a short, high-fidelity time series of flow fields.
- 1.) Take time-ordered sequence of fields.
- 2.) Jump to most similar state in the past.

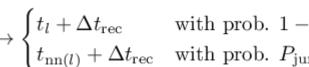


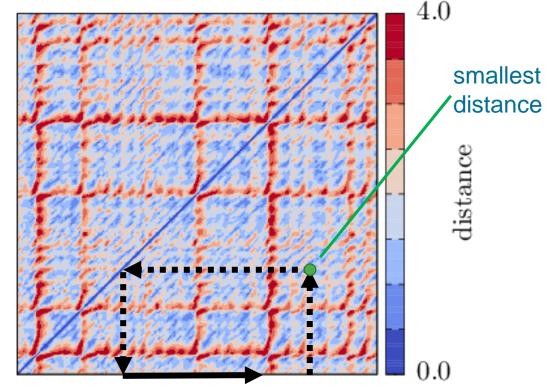
Recurrence CFD¹ in a nutshell

- 0.) Create a short, high-fidelity time series of flow fields.
- 1.) Take time-ordered sequence of fields.
- 2.) Jump to most similar state in the past.
- 3.) go to 1.)

rCFD = iterated nearest-neighbor search

realized e.g. as Markov process: $t_l o \begin{cases} t_l + \Delta t_{\rm rec} & {
m with \ prob.} \ 1 - P_{
m jump} \\ t_{
m nn}(l) + \Delta t_{
m rec} & {
m with \ prob.} \ P_{
m jump} \end{cases}$





1. TL and Pirker, Chem. Eng. Sci. 153 (2016)

Wait a minute

Is this "trivial" time-extrapolation accurate?

- (2) chaotic dynamics: can't get single trajectory right
- © BUT: smooth series of physically valid flow fields, correct spatially resolved mean and variance;

Why should it work?

- © Long-term dynamics is often recurresilience ungaising lynghoter return times!
- accumulation of prediction errors

 BUT: bound to database can deal with transio-recurrent conditions somehow²...

How is it useful?

fast dynamics + slow, long-term process → rCFD can help! But no new info about dynamics...

time-extrapolation

conventional simulation

- 1. TL, Abbasi, Pirker, Chem. Eng. Sci. 259 (2022)
- 2. TL et al., Chem. Eng. J. 364 (2019)

Recurrence CFD and its flavors (1)

"Field-based" rCFD: conventional transport in time-extrapolated fields

Continuous: Passive transport

$$\frac{\partial}{\partial t} \alpha^{(\text{rec})}(\mathbf{r}, t) c(\mathbf{r}, t) + \nabla \cdot \alpha^{(\text{rec})}(\mathbf{r}, t) \mathbf{u}^{(\text{rec})}(\mathbf{r}, t) c(\mathbf{r}, t)$$
$$- \nabla \cdot \alpha^{(\text{rec})}(\mathbf{r}, t) D \nabla c(\mathbf{r}, t) = S(\mathbf{r}, t)$$

concenctration field c subject to calculation, volume fraction α and velocity \mathbf{u} taken from recurrence database

Discrete: Non-interacting tracer particles

$$d\mathbf{r}_{i} = \mathbf{u}^{(\text{rec})}(\mathbf{r}_{i}, t)dt + d\mathbf{r}_{\text{rnd}}$$
$$\frac{d}{dt}Cm_{i}T_{i} = \dot{q}_{\text{p-f}} + \dot{q}_{\text{p-p}}$$

tracers follow particle velocity field; random

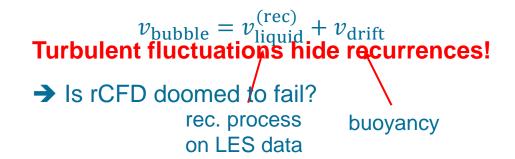
fluctuations, no contact detection!

heat transfer from/to surrounding fluid; chemistry

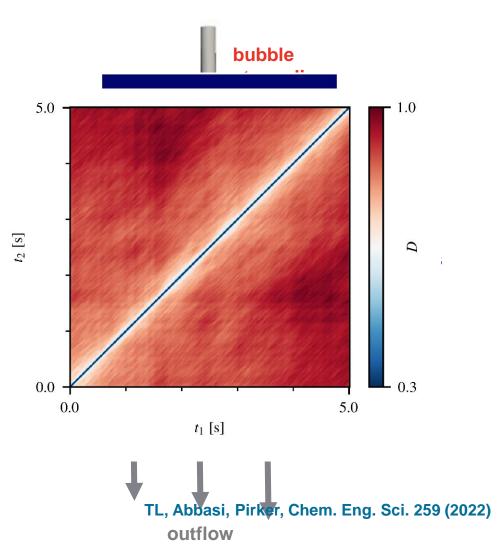
Application case

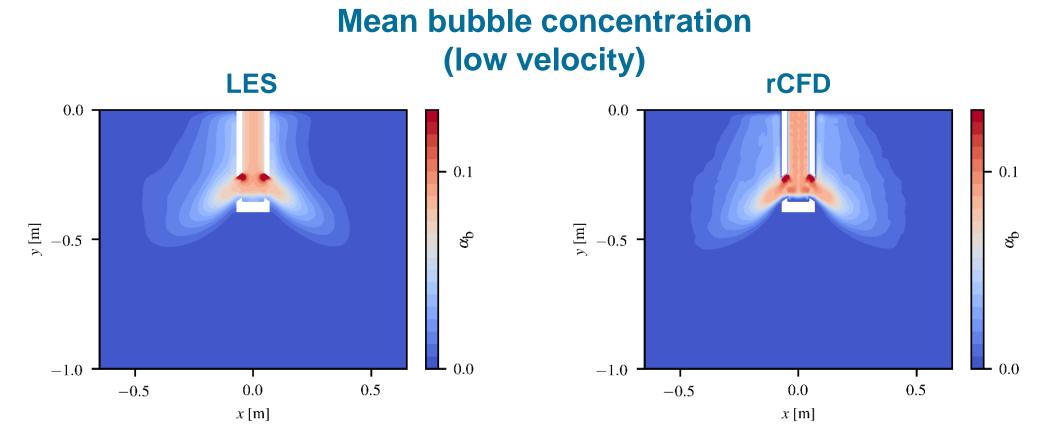
Bubble transport in a submerged double jet

- toy model for continuous casting of steel
- Argon bubbles injected with jet
- characteristic pattern: turbulent eddies
- long-term bubble distribution important



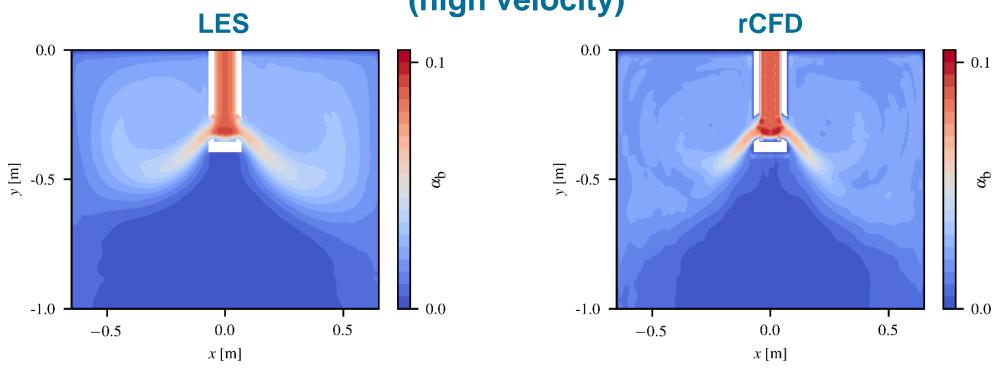
Javurek and Wincor, Steel Res. Int. 91 (2020)





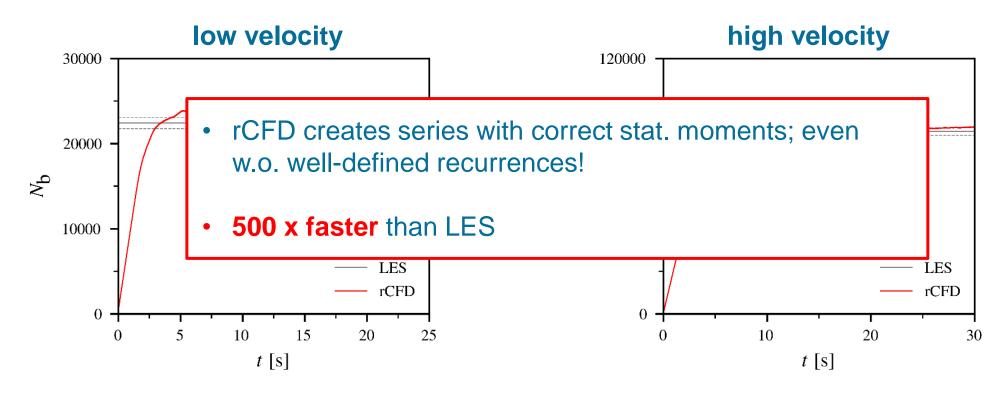
(very) good agreement with reference simulation – why?

Mean bubble concentration (high velocity)



(very) good agreement with reference simulation - why?

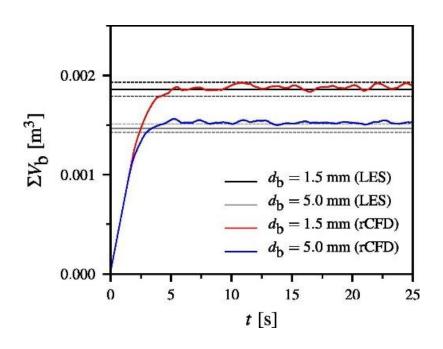
Bubbles in domain



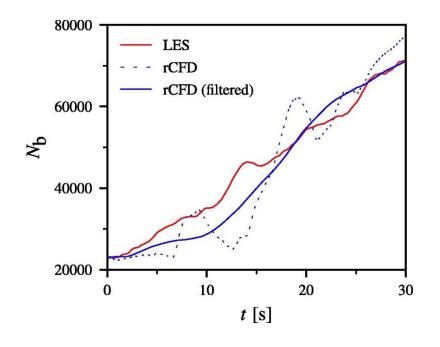
(very) good agreement with reference simulation – why?

Generalization to off-database conditions? Sometimes, somehow ...

bubble diameter



increasing inlet velocity



LES too slow for long-term simulations of mold flow

- speed up 500 by rCFD
- next steps: real-time capability

rCFD can capture turbulent transport despite chaotic dynamics

- worked better than expected
- BUT: bound to database, only limited generalizability

structureless distance plot =!= purely stochastic process

strong temporal correlations, cannot just use stochastic process

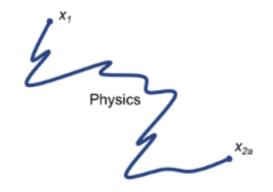
Current activities

Recurrence CFD and its flavors (2)

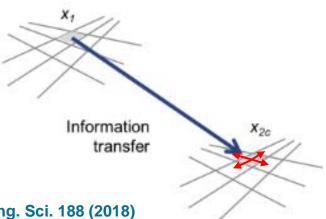
"Transport-based" rCFD: a propagator approach to transport processes

$$\frac{\partial}{\partial t}c(\boldsymbol{r},t) + \nabla \cdot c(\boldsymbol{r},t)\boldsymbol{u}(\boldsymbol{r},t) = \nabla \cdot D(\boldsymbol{r},t)\nabla c(\boldsymbol{r},t) \quad \text{implies} \quad c(\boldsymbol{r},t) = \int K_{\mathrm{cc}}(\boldsymbol{r},\boldsymbol{r'};t,t')c(\boldsymbol{r'},t')\mathrm{d}^3r'$$

- K_{cc} propagator of the passive transport equation
- simplest approximation: cell-to-cell map + diffusion



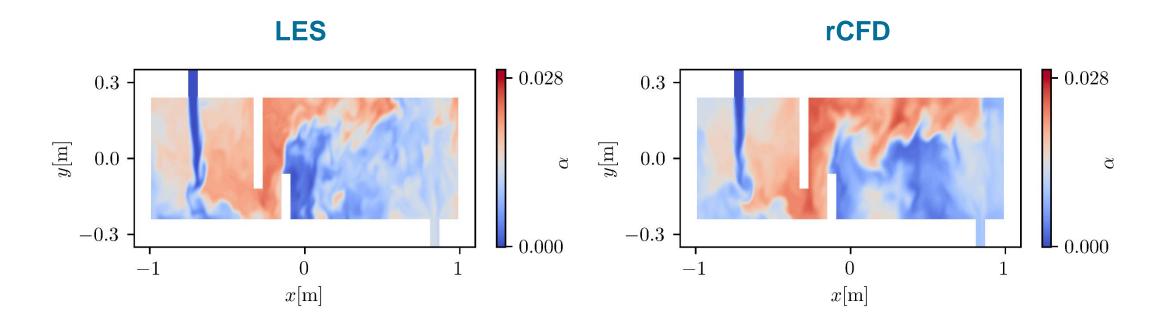
itor instead of ve



Pirker and TL, Chem. Eng. Sci. 188 (2018) Lumetzberger, Pirker, TL, Chem. Eng. Sci. 311 (2025)

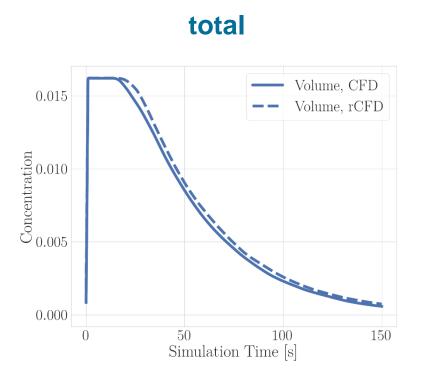
Demo case: species transport in a tundish

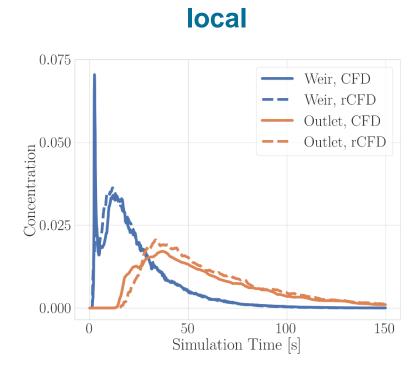
Residence time: pulse of 'impurity-laden' steel (red)



Demo case: species transport in a tundish

Residence time: pulse of 'impurity-laden' steel (red)



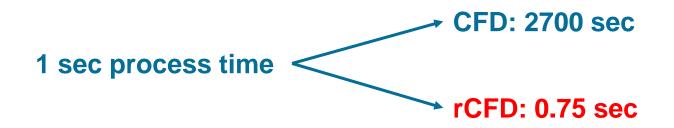


Lumetzberger, Pirker, TL, Chem. Eng. Sci. 311 (2025)

K1MET project: Advancement of simulation acceleration for process applications

Demo case: species transport in a tundish

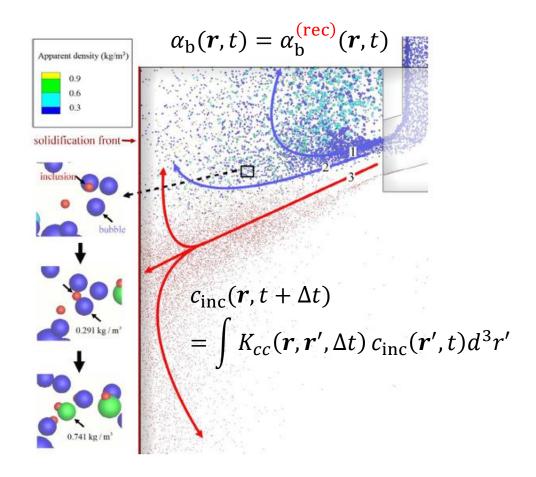
We have the means for *accurate*, faster-than-real-time simulations!



Application to full-scale SEN flow

Strategy to simulate impurity removal

- time-extrapolate bubble distribution
- simulate impurity transport via propagator approach
- empirical capturing efficiency of impurities at bubbles



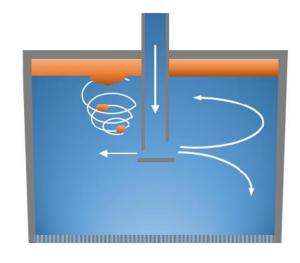
Lai et al., ISIJ Int. 58 (2018)

Future perspectives

Submerged, turbulent jets

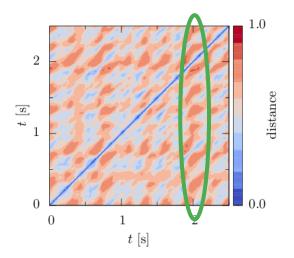
Goal and challenges

- predictions about undesired behavior (e.g. entrainment)
- rare events: difficult for both classical and data-driven simulations



Rare-event focused data generation

- find 'rarest' state in time series and continue with slight perturbation
- iteration: database of rare events



Submerged, turbulent jets

Strategy and planned activities

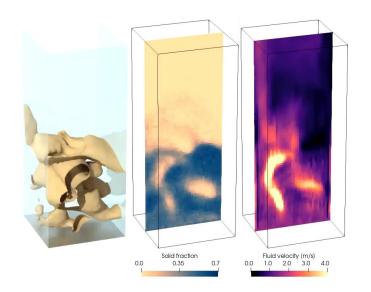
let deep NNs learn turbulent dynamics under 'tame' conditions

- correlate predictions with sensor measurements (e.g., interface dynamics)
 - trigger rare events

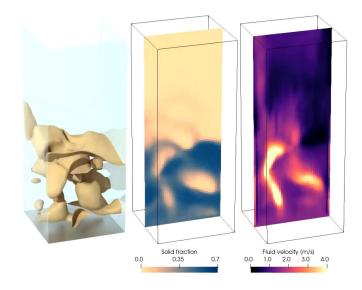
Submerged, turbulent jets

Can we 'just let a NN learn turbulent dynamics'?

- need enough data and appropriate network architecture: universal physics transformers
- proof of concept for fluidized beds



CFD-DEM vs NN: which is which?



Alkin et al., submitted to Nat. Mach. Intell., arXiv preprint arXiv:2411.09678 (2024)

Conclusion

Data-assisted simulations will massively improve development, optimization, and control for a wide range of process types such as continuous casting of steel.

- real-time capability
- long-term stability and accuracy regarding the relevant physics
- flexibility to deal with various types of input data, dynamic regimes etc.

digital process twins

How can we get enough training data?

- physics-informed machine learning
- physics-based augmentation

JOHANNES KEPLER UNIVERSITY LINZ